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A review and some new results are presented for several cluster statistics models, 
solutions of which can be reduced to difference equations. Mathematical techni- 
ques suitable for solving these equations are surveyed. 
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1. INTRODUCTION 

Cluster statistics models, such as random walks, lattice animals (connected 
clusters), surfaces, and solid-on-solid strings and sheets, serve as prototype 
systems with "geometric" phase transitions. Typically, such models involve 
a set of N connected points (sites) or links (bonds) on a d-dimensional 
lattice. Geometric constraints such as self-avoidance, directedness~ or com- 
pactness are imposed. Universal features of the large-N behavior of the 
cluster number (entropy), sizes, and shape are then investigated. However, 
exact results can be obtained only in a limited number of cases, especially 
when both the universal critical and the global behaviors are concerned. 
For example, the isotropic percolation models have proved to be 
notoriously resistant to analytic treatment. On the other hand, many 
variations of the non-self-avoiding random walk models can be solved 
exactly. 

In this paper we review a class of compact 2d cluster models that in 
many cases can be solved exactly for the partition functions that generate 
the cluster numbers. We also report various new results. The partition 
functions are obtained as solutions of difference equations. The appropriate 
mathematics are sometimes rather complicated, involving objects such as 
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q-series, continued fractious, etc. We survey some of the mathematical 
methods, including several results developed quite recently. An accom- 
panying article (~) reviews recent advances in the applications of difference 
equations to studies of solid-on-solid models of surface critical phenomena 
in two dimensions. 

In Section 2, we consider a model of stackings of squares at a line 
wall. (2/ It can be easily solved (3) and will serve to illustrate some of the 
general features of the compact lattice animal models. A model of stackings 
of circles (2) in a triangular lattice array at a line wall is considered in Sec- 
tion 3. The solution of this model (4) involves q-series and fully illustrates 
the mathematical complexity of some of the compact animal models. Two 
methods that are useful in solving the compact animal models, namely the 
use of continued fractions and the generating function approach, are out- 
lined in Sections 4 and 5, respectively. In Sections 6 and 7, we discuss the 
so-called (2~ "one-tooth" versions of the square and circle stackings, (2"51 and 
mention results for a related model(2: 6) of filling a corner by squares. We 
then turn to the compact directed animal models on partially and fully 
directed square lattices (Sections 8 and 9, respectively). (7 10m Additional 
mathematical aspects, beyond the conventional methods, are summarized 
in Section !0. Finally, some open problems, 3d model (t~ results, etc., are 
mentioned in Section 1 1, which is devoted to discussion and summary. 

2= STACKINGS OF SQUARES AT A LINE WALL 

Following Temperley, (2/ we consider a 2d "castle wall" built up from 
N squares, as shown in Fig. 1. The base row of the cluster must be 
continuous. Higher rows can have gaps. However, each column must be 
continuous "self-supporting." One can easily calculate (3) the total number 
CN of different N-site clusters, i.e., the number of possible arrangements of 
N squares consistent with the above rules. In order to avoid counting 
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Fig, l. Stacking of squares according to the rules of a model censidered in Section 2. 
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clusters that differ only by overall translations, we pin the lowest leftmost 
square with its center at (x, y ) =  (0, 0) (see Fig. 1). 

Let CN, k denote the number of different clusters with exactly k squares 
in the leftmost x = 0 column (k = 2 in Fig. 1). Define the restricted partition 
functions 

c z N k>~l (2.I) F k ( z )  = N,k k, 
N = k  

These functions satisfy the recursion relations 

Fk(z ) = 1 + ~ z 'Fm(z)  (2.2) 
m = l  

where each term specifies one possible configuration of the next column 
centered at x = 1. The term l corresponds to no second column (the k = N 
cluster). Each m > 0 term in (2.2) sums up all configurations with exactly m 
squares at x = 1, with F~(z) accounting for the distribution of squares in all 
the x > 1 columns. 

The total partition function G(z) for the cluster numbers c N is given by 

N - - 1  k ~ l  

where the last step is self-explanatory [-see (2.1)]. Inspection of (2.2) gives 

Fk(z) = 1 + G(z) for all k (2,4) 

Finally, substitution in (2.2) yields 

1 + G = l + ( l + G )  ~ z '~ (2.5) 
m = l  

Z 

G(z) - 1 - 2z (2.6) 

The Ta ~ or  series coefficients of this function are the desired cluster 
numbers c x [see (2.3)]. Thus, 

CN = 2 N 1 (2.7) 

for the square-stacking model. The general large-N form, applicable to 
~os t  lattice animal models, is 

C N ~ AN-~ N (2.8) 
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Here A and 2 are model-dependent, while the "critical exponent" 0 is 
universal for large classes of models that differ by the details of the 
"microscopic" connectivity rules, lattice structure, etc., but share global 
"macroscopic" features such as directedness, compactness, and dimen- 
sionality of space. Here we have 0 = 0. 

As usual, the large-N behavior of the Taylor coefficients CN of the 
partition function is controlled by the singularity nearest to the origin 
on the real z > 0 axis (since all CN > 0). In the present case, the singularity 
is a simple pole at zc = 1/2. 

3. S T A C K I N G S  OF CIRCLES AT A LINE W A L L  

In this section we consider stackings of circles (2) at a line wall as 
illustrated by the open circles in Fig. 2: N circles are positioned in such a 
way that the base row is continuous. The higher rows can have gaps; 
however, each circle must be "supported" by having both lower-y 
neighbors occupied. The centers then follow the pattern of the triangular 
lattice with spacing equal to the circle diameter. 

In order to solve the model, ~4) we extend the allowed configurations to 
include additional k - 1  base circles along a lattice direction forming 60 ~ 
with the negative x axis. The case k = 3 is illustrated in Fig. 2. The k - 1 = 2 
filled circles are part of the base. Together with the open circles they can 
"support" additional circles (filled circles in Fig. 2). 

Let CN,~ denote the number of distinct N-circle clusters with exactly k 
circles in the 60 ~ base (counting the origin circle, which also belongs to the 
horizontal base at y = 0, the length of which is not restricted). The restric- 

I I  
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X 

Fig. 2. Compact self-supporting stacking at the line wall (open circles). Filled circles 
illustrate the two additional 60 ~ base circles (see Section 3) and the circles supported by the 
extended base. 
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ted partition functions Fk(z) defined as in (2.1) satisfy the recursion 
relations 

k + l  

Fk(z)= 1 + ~ zmFm(z), k ~  1 (3.1) 
m = l  

As in Section 2, the terms on the right sum up configurations with different 
number m of circles in the 60 ~ row next to the base 60 ~ row. Note that by 
the stacking rules, m cannot exceed k +  1. Replacing (3.1) by the first 
difference, we get a second-order difference equation 

Fk + I(Z)-- Fk(z)= zk + 2Fk + 2(Z), k ~ 1 (3.2) 

with the boundary condition (k = l) 

F~(z) = 1 + zF1(z) + z2Fz(z) (3.3) 

Note that the partition function for the original circle-stacking problem, 
defined by the left relation in (2.3), is given here by 

G(z) : zFl(z  ) (3.4) 

The general solution of (3.2) can be represented as 

A(z)  (kk(z) + B(z) qSk(z ) (3.5) 

where (4~ 

~(z) ~ (-1) "z"{"+~+l~ : (3.6) 
.=o q. 

with qo =- 1 and 

qn_=I~I ( 1 - z  j) for n~>l (3.7) 
j = i  

represents the "physical" or regular at z = 0 (for k ~> - 2 )  solution. One can 
show (4) that the second linearly independent solution ~k(z) is power-law- 
singular at z = 0 for sufficiently large k. Furthermore, in the mathematical 
nomenclature, c12) ~bk(z) is the minimal solution, in that 

lira [~,(z)/qSk(z)] = 0  (3.8) 
k ~ c ~  

for all z values of "physical" interest, i.e., for 0 < z  < 1. More detailed 
discussion of the minimal solution concept is given in an accompanying 
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article. (~) Methods of solving the second-order difference equations of the 
type (3.2) are discussed in Sections 4, 5, and 10. 

The boundary condition (3.3) can be satisfied with B ( z ) -  0 and 

A ( z )  = [(1 -- z) ~b~(z) - z2~b2(z)] -~ (3.9) 

in (3.5). Thus, the partition function for the circle-stacking problem, 
relation (3.4), reduces to 

Z 

G(z)  = 1 - z - z202(z)/Ol(z)  (3.10) 

The q-series ~bg(z) are analytic for Izl < 1, with a natural boundary at the 
unit circle. However, the nearest-to-the-origin"singularity of G(z) is a 
simple pole at the first zero of the denominator of (3.10), at 

z c = 2  1 =0.576148769... < 1 (3.11) 

Thus, we have 0 = 0 for the universal exponent in (2.8). Further details can 
be found in ref. 4. 

4. C O N T I N U E D  F R A C T I O N  T E C H N I Q U E S  

A standard mathematical approach to linear second-order difference 
equations (1:'~3) utilizes continued fractions to calculate the minimal 
solution [see (3.8)]. We illustrate the technique for the circle-stacking 
problem of Section 3. 

The difference equation (3.2) is reformulated in terms of the ratios 

R~(z)  = F~ + l ( z ) / r~ ( z )  (4.1) 

as  

1 - -  R~- 1(2~ = Z k + 2 R k  (4.2) 

1 
(4.3) 

R ~ =  1 --zk+2Rk~_j 

This relation can be iterated to generate a "backward" continued fraction 
representation 

1 
Rk(z )  = zk+2 (4.4) 

1 -- zk+3 

1 - -  z k + 4  

1 
. . . .  
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The Pincherle theorem (~4) then ensures a one-to-one correspondence 
between the convergence of the continued fractions (4.4) and the existence 
of the minimal solution given by 

k 1 

(bk(z) = Oo(Z) I~ Rj(z), k ~> 1 (4.5) 
j = 0  

[Note that ~b~(z) is defined up to an arbitrary z-dependent coefficient ~bo(Z), 
since (3.2) is linear.] 

For the "physical" partition function (3.10), we could ase the con- 
tinued fraction representation obtained by replacing ~b2/~b ~ in (3.10) by 

O2(z) 
~,(z) 

1 -  
_ 

Z 3 

Z 4 

Z 5 

. . . .  

(4.6) 

This form can be used to reproduce all the conclusions on the analytic 
structure of G(z) mentioned in Section3/4~ The continued fraction 
representation is also not inferior to the infinite-sum forms such as (3.6) for 
numerical computation purposes/TM However, the infinite-sum represen- 
tations are more familiar. They can be obtained in many cases by utilizing 
mathematical results building on the classical work of Ramanujan/15 17) 
For the identification of Rk of (4.4) with ~b~+l/~bk of (3.6) one can use a 
result given, e.g., in ref. 15 (p. 25, third unnumbered equation). 

For physical applications and, in particular, to analyze the complex- 
plane singularities, an infinite-product representation of a partition function 
would be valuable. We are n o t a w a r e  of any mathematical results 
appropriate for G(z) here. However, infinite-product forms have been 
utilized in other applications of the q-series in physics. (18) 

We will see in Sections 6-10 that in some cases both the minimal and 
some of the other linearly independent solutions are physically relevant. 
When one solution (minimal) is available, the order of the difference 
equation can be reduced by one, by standard methods. (19) 

5. GENERATING FUNCTION METHOD 

This approach (19) consists of considering the generating function 

P(z, t)= ~ fk(z) t k-I 
k = l  

(5.1) 
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When the difference equation is multiplied by t k- 1 and summed over k, 
one sometimes ends up with an equation for P(z, t). Specifically, for 
difference equations with constant (k-independent) coefficients, algebraic 
equations for P are obtained. Equations with coefficients involving integral 
powers of k yield differential equations for P; this case is important in 
the solid-on-solid model studies. (1) However, difference equations with 
exponential-in-k coefficients, such as z k, lead to functional equations for 
P(z, t) that are rather difficult to solve in general. We will consider a few 
examples in the following sections. 

The generating function method and related techniques, (19/ e.g., 
Laplace's method, complement the continued fraction approach. However, 
they can also be used for equations of order higher than second, and in 
some cases are advantageous even for second-order difference equations. (~) 

As already mentioned, for compact cluster statistics models considered 
here, one typically obtains a functional equation for P(z, t) of the form 

P(z, t)= a(z, t )+ b(z, t)P(z,  tz) (5.2) 

Mathematical literature on equations of this sort is limited. ~2w22) When the 
resulting series is well defined, one can use a solution obtained by iterating 
(5.2) an infinite number of times, 

P(z, t )= a(z, t )+ a(z, lz n) ~ b(2, tz m) 
n~l m=O 

The solution of (5.2) is linear in a in the sense that for 

one has 

a(z, t) = cq(z) al(z, t) + ~2(z) az(z, t) 

(5.3) 

(5.4) 

a(z, t) = F~(z ) -  zZFz(z) zFl(z ) (5.6) 
1 - t t ( t  - t )  

Z 
b(z, t ) = - -  (5.7) 

t(1 - t )  

Each solution is a linear combination of the type (5.5), with a~ = (1 - t) ~, 
a2= I t ( l - t ) ]  -~. The coefficients c~(z) involve two unknown functions 

as can be seen explicitly for (5.3). 
For the circle stacking problem considered in Sections 3 and 4, the 

appropriate equation (5.2) has 

Pa = ~1(z) Pa, + ~2(z) Pa2 (5.5) 
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Fl,2(z). One relation between the coefficients is provided by the boundary 
condition (3.3). Another condition must therefore result from the 
"analyticity" requirement on P(z, t) near t---0. 

However, expansion (5.3) is ill-defined in this case. The generating 
function technique can be applied to this problem if we consider modified 
functions 

f k (z )  = z g(k + l)/2Fk(z ) (5.8) 

satisfying 

L +  ~(z) - A  + 2(z) = z k+ l fk(z)  (5.9) 

After a tedious calculation utilizing (5.3), one ends up with an expression 
for the partition function G(z). However, it is much more complicated than 
(3.10) with (3.6) or (4.6). We omit the details of this calculation. 

6. SINGLE P Y R A M I D  STACKING OF SQUARES 

In this section we consider a ~ ''~2~ stacking of squares in a 
pyramidlike shape illustrated in Fig. 3. The model is similar to that of Sec- 
tion 2, but with the additional requirement that each row is continuous. 
The quantity of interest is the total number cN of pyramids that can be 
built from N squares. Let cu.k denote the number of distinct N-square 
pyramids with exactly k squares in the base row. We define the restricted 
partition functions by (2.1). The appropriate recursion relations are ~2) 

k 
F k = l +  ~ ( k - m + l ) z m F m  (6.1) 

rn=l  

The important change here, as compared to the recursions considered in 
Sections 2 and 3, is the factor ( k - m  + 1) accounting for the number of 

Fig. 3. Pyramid stacking of squares, defined in Section 6. 



1100 Privman and ,~vrakic 

ways in which the second row of m ~< k squares can be positioned. The 
k = 1, 2 relations provide the boundary conditions, which can be simplified 
to 

1 1 

F l ( Z ) -  1 - - z '  F2(z) : (1 --z) --------~ (6.2) 

For higher k relations, we form second differences to obtain 

Fk+2 -- 2Fk+ 1 + Fk = zk+2Fk+2 (6.3) 

Examination (2) of (6.1) suggests that all Fk are rational functions of the 
form 

Fk(z) = fk(z)/qk(z) (6.4) 

[see (3.7)], where fk are polynomials. Finally, note that the total partition 
function for the single-pyramid problem is given by 

G(z) = P(z, z) (6.5) 

[see (2.3), (5.1)]. 
Let us apply the generating function method to (6.2) (6.3). Proceeding 

along the lines of Section 5, we get 

( 1 - z - 2 t )  F l ( z ) + t ( 1 - z 2 ) F 2 ( z )  z 
P(z, t ) =  ( l - - t )  2 +(l_-----L~P(z, tz) (6.6) 

Since there are two boundary conditions, we expect that both linearly 
independent solutions are physically acceptable. In this c a s e  F1, 2 are known 
explicitly. Thus, (6.6) reduces to (5.2) with 

1 z 
- b - - -  ( 6 . 7 )  

a 1 - t '  ( l - t )  2 

By using (5.3), P(z, t) is obtained, 

z"(1 - tz n) 
P(z, t )--  I, (6.8) 

,=o [-I-I~=o (1 - -  tzm)] 2 

For t = z, this is identical with the result obtained by . ~2) Tempeney for G(z) 
[see (65)]  by a different method, 

Zn( l __ zn+ l) 
G(z) = .~o~ " q~+ l (6.9) 
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This function has an essential singularity at z = 1, analysis of which yields 
the large-N cluster numbers as (5) 

CN,,~ AN 5/4]2"/N (6.10) 

where A and # are constants. This result is different from the generic lattice 
animal form (2.8). It is interesting to mention in this connection a model of 
filling a corner by squares (2'6) obtained by imposing additional constraint 
in the one-pyramid square packing model, namely that the leftmost column 
must not be shorter than any other column in the cluster. The resulting 
model is equivalent (a6) to enumeration of nonincreasing partitions of N. 
Thus, detailed results are available, (2"6'23~ specifically 

C N ,~ A N -  IFt x/u (6.11) 

(with different A and#).  The exponent of the power-law factors in 
(6.10)-(6.11) is not universal, unlike 0 in (2.8). 

Turning back to the one-pyramid packings of squares, we derive an 
explicit form for the restricted partition functions Fk(z) by expanding (6.8) 
in powers of t. We use the identity (23) 

V q"+J l(")t (6.12) (l - tz m) =j~o  q,- i (z)  q/(z) 
0 

to get 

2 n 
(6.13) 

where 

k 
Tk, n ~  Z qn+j - - l (Z )  q n + k - j  1 ( Z )  

j - o  qj(z) qk j(z) 
(6.14) 

This double-sum representation is not very illuminating. (See further 
below.) 

The continued fraction method can be used to derive the form of the 
minimal solution of (6.3). We will only quote some results here. Continued 
fractions of the type appropriate for (6.3) were analyzed by Ramanujan. (17) 
As a result, an infinite series representation is available, 

zn(n + k + l ) 
~bk(z) = 2 (6.15) 

n = O  qn 
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However, for this problem the other linearly independent solution r is 
also physically admissible. By reducing the order of the equation using a 
known solution, (~9) we get an extremely complicated result. 

However, a relatively simple representation for q~k(z) can be 
obtained (24) by the method described in Section 10. Thus, 

zn(n+k+l ) 
~bk(z ) = k + 2 [k + s,(z)] (6.16) 

n = l  q,, 

where 

n 1 

sn (z ) -2 j_~11_z j  for n~>l (6.17) 

By imposing the boundary conditions, we get 

( 1  - z)(,k~ ~2 - ,/,2 'P~) - ( ~ 1  - ~,~ ' ~ )  
F , ,=  

(1 - z )  ~ (r ~ -  r  
(6.18) 

Another solution of (6.3), 0k(z), linearly independent of ~bk(z ), is known in 
the theory of q-ultraspherical polynomials, (21) 

0h(z)= ~ (6.19) 
m-O qmqk--m 

This can be used in place of 45 k in (6.18). 

7. SINGLE P Y R A M I D  STACKING OF CIRCLES 

Pyramid-shape or "one tooth" stacking of circles (2'5) is illustrated in 
Fig. 4. The stacking rules are identical to those of Section 3 (Fig. 2), but 
now each row must be continuous (no gaps). Let Cu, k denote the number 
of distinct N-circle clusters with k circles in the base. Note that CN-- 

�9 ~r �9 �9 

~r T �9 �9 

Fig. 4. Pyramid stacking of circles, defined in Section 7. 
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equal to ~Nk=~r CN, k, where ~c is the smallest integer greater than or 
[ (8N+ 1)s/z- 1]/2. The restricted generating functions satisfy 

k - - 1  

F ~ ( z ) = l +  ~ ( k - m ) z m F m ( z ) ,  k>~2 (7.1) 
m = l  

with Fl ( z )=  1. By forming the second difference, this is reduced to 

Fk+2--2Fk+~+Fk=zk+lFk+~,  k>~l (7.2) 

with the boundary conditions 

F~ = 1, F 2 = 1 + z (7.3) 

Examination of (7.1) leads to the conclusion that all Fk(z) are polynomials 
of degree k ( k -  1)/2. The structure of this problem is quite similar to that 
of the pyramid-of-squares packings considered in Section 6. Therefore, we 
only list some central results here. 

The generating function method can be invoked for the pyramid circle 
packings. As in Section 6, the boundary conditions (7.3) are used to yield 

1 zt 
- b ( z ,  t ) = -  (7.4) a(z , t )  1 - t '  ( 1 - 0  2 

Thus, (5.3) takes the form 

-- ~ tnz"C"+l)/z(1--tZn) 
P(z, t ) -  " 1 z m 2 (7.5) 

.=o EFIm=o( - t  ) ]  

The total partition function is given by 

G(z)= P(z, z ) =  
z(n-1)(n+ 2)/2( l ~ ~ n ~ 

n =l q](z) (7.6) 

identical with the result of Auluck (5) obtained by a different method. It has 
an essential singularity at zc = 1, analysis of which yields 

C N ~ 12 x/N (7.7) 

(Unfortunately, the form of the power-law prefactor here is not known.) 
Difference equation (7.2) can be also analyzed by continued fraction 

techniques: we only quote the form of the minimal solution, 

zn(n + 2k  + 1 ) /2 

qJk(z) = q](z) (7.8) 
n = 0  
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This infinite series form of ~b~(z) follows from yet another of the Ramanu- 
jan's results. 117) In fact, both solutions of (7.2) are physically acceptable. 
The second solution can be f o u n d  (24) by the method of Section 10, 

z n ( n  + 2k + l )/2 

~/i~(z) = k + 2 ( k - n + s . )  (7.9) 
n=l q. 

The boundary conditions then imply 

( 1 -~- Z) (~I  ~Pk - -  0k (1)l) - -  (42 ~ k  - -  ~k ~J~2) 
rk = (7.10) 

8. PARTIALLY DIRECTED C O M P A C T  LATTICE A N I M A L S  

In this section we consider the partially directed compact lattice 
a n i m a l  model (7'9 lo) illustrated in Fig. 5. The model is most easily described 
as having N squares positioned in (continuous) columns. The neighboring 
columns must touch by at least one square. A formulation according to 
directed square lattice animal rules is also possible.'"- (9) 

Let k denote the number of squares in the leftmost "root" column and 
Cu, k be the number of distinct N-square k-root clusters. Then the restricted 
partition functions (2.1) satisfy 

F , ( z ) = l +  ~ ( k + m - 1 ) z m F m ( z )  (8.1) 
m = l  

By forming the second difference, we get 

Fk+2 2Fk+ 1 +Fk = 0, k~>l (8.2) 

m m m  

m 

m 

m 

m 

m m  m m  

m 

Fig. 5. A partially directed compact lattice animal (Section 8). 
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with the boundary conditions [ k =  1, 2 in (8.1)] 

F 1 = 1 q'- )_~ m z m F m  (8.3) 
m - - 1  

F 2 = l +  ~ (m+l)zmFm (8.4) 
m = l  

This problem is interesting in that (8.2) has constant coefficients. Thus, it 
can be solved in full detail. Specifically, the minimal solution is simply 
~bk(z ) = 1, while the other linearly independent solution is qS~(z)= k. Both 
solutions are physically acceptable. We have 

Fk(z ) = A(z) + B(z)k (8.5) 

The coefficient functions A and B are determined by (8.3)-(8.4). One gets (9) 

kz(1 - z) 3 + (1 - 3z + z2)(1 - z) 2 
Fk(z) = 1 -- 5z + 7z z -- 4z 3 (8.6) 

The total partition function is given by 

G(z)= ~ ?Fk(z)= z(1--z)3 
1 -- 5z + 722 - -  4z 3 (8.7) 

k = l  

All the partition functions (8.6)-(8.7) have a simple pole singularity at 
zc =/ l  1, where 

o r  

2 = 3.20556943... (8.8) 

2 =  12/[(6 ~ - - 7 1 ) 1 / 3 -  (6 ~ +  71 )1/3+7] 

Thus, (2.8) applies, with 0 = 0. 

(8.9) 

9. FULLY DIRECTED C O M P A C T  LATTICE A N I M A L S  

Although the model considered in this section can be defined 
according to the square lattice directed animal rules, (s'9~ it can also be 
described as stackings of circles: see Fig. 6. Continuous (no horizontal 
gaps) rows of circles are put on top of each other with the requirement that 
each circle not in the base is supported by having at least one of its lower 
neighbors present.' (Thus, the difference with the pyramid stackings of 
circles is that there "supported" meant both lower neighbors occupied.) 
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Fig. 6. A fully directed compact lattice animal (Section 9). 

As usual, we consider the restricted partition functions F~(z)  for the 
numbers Cu, k of N-circle, k-base clusters, satisfying (8'91 

k + l  

F~(z)= 1 + ~, ( k - m + Z ) z m F , , , ( z )  (9.1) 
m = l  

Except for the two boundary conditions 

F1 = 1 + 2zF1 + z2F2 
F2 = 1 + 3zF1 + 2zZF2 -t- z3F3 

(9.2) 

(9.3) 

the recursions can be reduced to ~ 

Fk + 2(z) -- 2Fk + l(Z) + Fk(z )  = z k + 3Fk + 3(z) (9.4) 

This is a third-order equation. Since there are two boundary conditions, 
one anticipates two physically "regular" and one "irregular" solutions. 
Various studies (8'9'24) have found a simple pole singularity in the partition 
functions [i.e., 0 = 0 in (2.8)] at zc = 2 1, with 

2=2.661857944... (9.5) 

The exact solution of this model has been achieved ~24) along the 
following lines. Note that all the difference equations encountered in the 
cluster statistics models have discrete first or second derivatives on their 
left-hand sides. This is related to the fact that the multiplicity factors, such 
as ( k - m + 2 )  in (9.1) are, respectively, constants or linear functions in 
their k dependence. By inspecting the minimal solutions obtained for the 



Cluster Statistics Models 1107 

second-order difference equations in the preceding sections, we can guess 
one solution for 

V~+l(Z)--Vk(Z)=Zk+mvk+t(Z), l ) O  (9.6) 

It is 

Vk(Z) = ~ ( -  1)"ZnEt~"-l)+2(k+,,n/2 (9.7) 
n = 0 qn 

Similarly, 

U~+2(Z)--2Uk+I(Z)+Uk(Z)=Z~+"Uk+t(Z), l>>.O (9.8) 

is solved by 

Uk(Z)= ~ q222 nU(n-l)+2(k+m)]/z (9.9) 
n = 0  

Thus, we have one solution for (9.4), 14) 

zn (3n  + 2k + 3)/2 

q~ (9.10) 
n = O  

regular at z = 0 for k ~> -3.  Formally, one can then reduce the order of the 
difference equation and apply the continued fraction method to derive the 
second regular solution. However, the resulting expressions turn out to be 
extremely complicated. The generating function method is also not useful 
because (5.3) is ill-defined. 

The second "physical" solution, ~b~(z), has been obtained (24) by a 
different method, described in the next section. We only quote the result for 
~bk here (see ref. 24 for further details), 

zn (3n  + 2k + 3)/2 

~k = k +  2 ( k + n + s . )  (9.11) 
.= l q .  

10. LARGE-k  A S Y M P T O T I C  B E H A V I O R  OF THE " 'PHYSICAL'" 
S O L U T I O N S .  RELATED M A T H E M A T I C A L  D E V E L O P M E N T S  

The nonautonomous difference equations encountered in our review of 
compact cluster models in Section 2-9 where always of the form (9.6) or 
(9.8). Depending on the value of the nonnegative integer 1, these equations 
may have several solutions. However, the physically acceptable solutions 
must be regular for small z. Furthermore, the series 

zkF~(z) (10.1) 
k = l  
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in (2.3), etc., must converge in the physically relevant part of the range 
0 <~ z < l, since (10.1) always represents some sort of partition function. 

Thus, for large k, the right sides of (9.6) and (9.8) asymptotically 
vanish for the "physical" solutions. It follows that there is exactly one such 
solution, (9.7), of (9.6), i.e., q~(z) - Vk(Z). It has a finite limit voo(z) - 1 as 
k-- .oe for fixed 0 ~ < z < l .  Difference equation (9.8), however, has two 
"physical" solutions, 4k(Z)--Uk(Z) Of (9.9), and ~b~(z), with large-k 
behaviors 

u~(z)--* 1 (10.2) 

and 

q~k(z)~po~(z)k, for 0 ~ < z < l  (10.3) 

It is interesting to recall that we always had exactly the right number of 
boundary conditions in Sections 3, 6, 7, and 9, requiring one solution of 
(9.6), but two solutions of (9.8). 

The asymptotically linear-in-k solution of (9.8) can be obtained by the 
ansatz (24) 

~ ( z )  = k(~(z) + g~(z) (10.4) 

Substitution in (9.8) and use of the fact that ~bk is a solution yield after 
some algebra the following inhomogeneous equation for gk(z): 

gk+2--2gk+l + g~=z~+mg~+~+(l--2) Ok+2--2(l--1)Ok+~ +l(~k (10.5) 

This equation can be solved by assuming 

zn[ l (n  - 1) + 2(k + m)]/2 

gk -- pnlz) (10.6) 
n=o q2 

Indeed, after a long but straightforward calculation, one concludes that Pn 
must satisfy 

pn+l(z)= pn(z)+l-  2 + 
2 

for n>~0 (10.7) 1 - z  n+l 

Note that ~k(z) can be redefined up to an additive term of the form 
h(z) Oh(z). This allows the convenient choice po(z)- O, yielding 

p,(z)=n(l--2)+s,(z) for n>~l (10.8) 
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where sn(z) is defined by (6.17). Finally, the second "physical" solution of 
(9.8) is obtained as 

q~k(z) = k  + ~, 
z n [ l ( n  - 1)+ 2(k + m ) ] / 2  

[ k + n ( l - 2 ) + s n ]  (10.9) ,= ~ q Z 

Note that this choice corresponds to poo(z)-= 1 in (10.3). 

11. S U M M A R Y  A N D  D I S C U S S I O N  

Our presentation of the solutions for several cluster statistics models 
illustrates the important features of this class of compact animals. If the 
stacking rules are sufficiently relaxed to allow for clusters with finite 
entropy N -1 In cn ~ In 2 per element (circle, square) in the large-N limit, 
i.e., 2 >  1, then the universal form (2.8) applies with 0 = 0 .  Models with 
more restrictive rules have entropy vanishing as N -1/2 [see(6.10), 
(6.11), (7.7)]. 

All the models studied were two-dimensional. In three dimensions, 
only limited results are available, for two cases. The first model generalizes 
the square stackings in a corner ~2"6) to stackings of cubes in a 3d 
corner. ~H'2) The second model is a certain 3d version ~1~ of the partially 
directed compact animals. It is hoped that more progress will be possible 
for d >  2 models in the future. 

Results on the average sizes and shape of compact clusters have been 
derived for square stackings in a corner ~z'6) and for the partially directed 
compact animals. ~1~ Much work remains to be done on this issue. 
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